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Abstract 

A general theory of X-ray diffraction by one- 
dimensionally disordered close-packed polytypic 
crystals has been developed. A random distribution 
of all possible single stacking faults for arbitrary 
n-periodical structure is taken into consideration. 
Exact expressions for measurable parameters of 
changes in the intensity distribution caused by faults 
are given. Initial equations of the theory have been 
formulated by applying Holloway's [J. Appl. Phys. 
(1969), 40, 4313-4321] method of analytic solution. 
For the mathematical description of disorder, suc- 
cessive layers of the perfect structure have been 
denoted by an additional subscript j. The probability 
of occurrence of the faulted layer with subscript k 
after the layer with subscript j has been denoted by 
ajk. A set of recurrence relations is developed for 
average phase factors of layers with subscript j on m 
positions. An arbitrary sequence of layers is written 
in these relations by using the so-called phase-change 
factors (after layer with subscript j) ,  determined by 
H~igg's structure symbols. Terms of the coefficients 
of the characteristic equation and boundary condi- 
tions which are necessary to describe the change in 
the intensity distribution are given for small values 
of ark. Finally, the shifts and broadenings of the 
reciprocal-lattice points and the changes in the 
intensity of peak maxima are derived in terms of ark. 

I. Introduction 

Crystals exhibiting the phenomenon of polytypism 
also have a strong tendency for the formation of 
stacking faults, One-dimensionally disordered poly- 
typic structures are often observed. This was found, 
among others, by Mitchell (1956), Jain & Trigunayat 
(1970), Lal & Trigunayat (1971), Minagawa (1977, 
1978) and Patosz (1981) in CdI2 crystals, Jagodzinski 
(1954, 1971), Jagodzinski & Arnold (1960), Krishna 
& Marshall (1971a, b), Pandey & Krishna (1977) and 
Pandey, Lele & Krishna (1977) in SiC crystals, Prasad 
& Srivastava (1973), Minagawa (1975, 1979) and 
Chand & Trigunayat (1977) in PbI2 crystals, Prager 
(1977) in AgI crystals, Mehrotra (1978) in CdBr crys- 
tals, Rai & Krishna (1968), Steinberger, Kiflawi, Kal- 
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man & Mardix (1973) and Farkas-Jahnke (1973b) in 
ZnS crystals, Iijima (1982) in mcGillite crystals, 
Kozielski (1975) and Patosz & Przedmojski (1976a, b) 
in Znl_~Cdx and ZnSI_,Se, mixed crystals, 
Demianiuk, Kaczmarek, Michalski & Zhmija 
(1979) and Michalski, Demianiuk, Kaczmarek & 
Zhmija (1979, 1981a, b, 1982) in different doped 
ZnS and ZnSe crystals and in ZnS~_xSex mixed 
crystals. 

It is known that stacking faults involve changes in 
the intensity distribution of X-rays diffracted from 
the crystals. This phenomenon can be used for the 
characterization of the structured faultiness of crys- 
tals. For this purpose it is necessary to know the 
relationship between the measurable parameters of 
the changes in the intensity distribution and the par- 
ameters of structured faultiness. 

The theory of X-ray diffraction by close-packed 
crystals with stacking faults was developed, among 
others, by Wilson (1942), Hendricks & Teller (1942), 
Jagodzinski (1949a, b), Paterson (1952), Gevers 
(1954), Johnson (1963), Allegra (1961, 1964), 
Kakinoki & Komura (1965), Kakinoki (1967), 
Howard (1977) and Frey & Boysen (1981). A satisfac- 
tory solution has been obtained for simple cases of 
X-ray diffraction by 3 C and 2H crystals with stacking 
faults. Different models of 3C and 2H crystals con- 
taining growth faults, single (intrinsic)-, double 
(extrinsic)-, triple- and multiple-deformation faults 
have been considered. 

The situation has been less satisfactory for the 
polytypic crystals. It is clear that more stacking faults 
can occur in the polytypic structures than in the most 
common 3C and 2H polymorphic modifications. 
Thus X-ray diffraction from polytypic crystals with 
stacking faults is also more difficult to describe. 
Gevers (1954) developed the theory only for 4H and 
6H(33) crystals containing deformation faults. More 
general methods formulated by Hendricks & Teller 
(1942) and developed by Kakinoki & Komura (1965), 
Kakinoki (1967), Takaki & Sakurai (1976) and Takaki 
(1977) are quite complicated and they have not been 
widely used for polytypic structures. Minagawa 
(1977, 1978) used these methods to study the struc- 
tural changes from 2H to 4H in CdI2 crystals and 
the stacking faults in CdI2-4H crystals. 
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At the same time, methods omitting the expression 
of X-ray intensity distribution by parameters of faulti- 
ness were developed, for example, in the works of 
Farkas-Jahnke (1973a, b), the method of model 
analysis of Patosz (1977) and the method of optical 
models of Gauthier & Michel (1977). However, calcu- 
lations were always too complicated and information 
about the structure was in some cases insufficient 
because of ambiguities which are admissible in these 
methods. 

None of the methods seems to be applicable for 
the complete characterization of the structural faulti- 
ness in the general case of polytypic crystals. The first 
complete expression for the X-ray intensity distribu- 
tion in reciprocal space for the simplest polytypic 
structure 4H with stacking faults was derived by 
Prasad & Lele (1971). All seven types of intrinsic 
faults in the 4H structure were taken into account in 
this theory. The average phase factor (exp [ i~p~ ]) and 
the X-ray intensity distribution in reciprocal space 
were expressed by nine parameters representing the 
fault probability. Then, from the formula for the 
intensity distribution, the influence of the stacking 
faults on the peak integrated intensity, integral 
breadth, peak shifts and peak asymmetry were found. 
One of the faults, the intrinsic-2h stacking fault, was 
investigated by Prager (1977) in AgI crystals. Using 
this theory, Lele (1974) solved the problem of X-ray 
diffraction from 6H(33), 9R(12)3 and 12R(13)3 struc- 
tures with stacking faults. However, only some par- 
ticular cases of the faults were considered. This theory 
has not found a wide use for other polytypic structures 
because of the too complicated calculations. 

Very useful simplifications of the theory were 
possible due to Hollway's (1969) method of analytic 
solution. This method, based on Wilson's (1942) 
equation, expressed the diffracted intensity directly 
in terms of the coefficients of the characteristic 
equation and the boundary conditions. Applying this 
method to Prasad & Lele's (1971) theory, Pandey & 
Krishna (1976) described the X-ray diffraction by 
6H(33) structure containing all 14 possible types of 
intrinsic faults. Some modifications of this method 
and adoption to 8H(44) and nH(~)  structures were 
presented by Michalski, Demianiuk, Kaczmarek & 
Zhmija (1981a, b) and some faults in 4H, 6H(33) 
and 8H(44) crystals were investigated (Michalski, 
Demianiuk, Kaczmarek & Zhmija, 1980, 1982). 

In the general theory presented below all single 
stacking faults in an arbitrary n-periodical close- 
packed polytypic structures are considered. The 
single stacking faults in 3C (intrinsic and twin or 
growth faults) and 2H (deformation and growth 
faults) structures are also considered in this theory. 

2. The initial equations 
In the notation used by Warren (1959), the diffracted 
intensity from a close-packed crystal with stacking 

faults can be written as 
+co 

I(h3)=@ 2 Y~ (exp(i~m))exp[27ri(m/n)h3], (1) 
m = --co 

where h 3 is the coordinate of the reciprocal space 
along various dimensions of the unit cell, n is a period 
of identity of structure in this direction, @2 is a factor 
independent of the faultiness of the structure, ~,. is 
the phase difference across a pair of mth-neighbour 
layers, and (exp (i~m)) is the average value of the 
phase factors evaluated from all pairs of mth-neigh- 
bour layers. 

In (1) the faultiness of the structure is taken into 
consideration only in the factor (exp (i~pm)). There- 
fore, finding the intensity distribution in reciprocal 
space was usually started by expressing this factor in 
terms of faultiness parameters. However, as follows 
from the work of Holloway (1969) and Pandey & 
Krishna (1976), the evaluation of (exp (i~,,)) is not 
necessary for finding the intensity distribution in 
reciprocal space. It is sufficient that the average phase 
factor (exp (i~m)) may be expressed in the form 

(exp (i~m)) = ~ K j X T ,  (2) 
j=l 

where the Xj are the roots of the so-called characteris- 
tic equation, which, in general, has the form 

a,,X n + an-1X'-I  + . . .  + a0 = 0, (3) 

and Kj are the roots of the set of equations 

J ( m ) =  K.iX j ,  m = l , 2 , . . . , n ,  (4) 
j=l 

where J(m) are the so-called boundary conditions 
[values of (exp (i~pm)) for m = 0, 1, 2 , . . . ,  n]. 

Then the intensity distribution in reciprocal space 
may be expressed in terms of the coefficients aj of 
the characteristic equation and boundary conditions 
J(m), without the solution of (3) and the set of 
equations (4). From Holloway (1969), (1) can be 
written as 

/(h3 ) _- @2 

x ½q J=' k~2=°a"-kJ j - k ) e x p [ ( n - j ) ( i 2 ~ / n ) h 3 ] - a  

Y. ajexp[ij(2~/n)h3] 
j=0 

+ complex conjugate. (5) 

However, complete expressions for the coefficients 
aj, boundary conditions J(m) and intensity distribu- 
tion are also not necessary for describing the changes 
in the intensity distribution. As will be shown in the 
next section, the main measurable parameters 
describing the changes caused by faultiness may be 
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evaluated by using only some terms of aj and J(m). 
These terms have been expressed by fault prob- 
abilities for arbitrary n-periodical structure assuming 
small values of these probabilities. 

From Figs. 1 and 2 it follows that non-twinning 
faults can occur in all polytypic structures, whereas 
twinning faults can only occur in structures with 
non-symmetrical distribution of sign, '+ '  and ' - '  in 

3. Stacking faults in arbitrary n-periodical structure 

For the simplest close-packed structures 3C and 2H 
the stacking of layers in the unit cell is sufficiently 
characterized by the symbols A, B and C. In polytypic 
structures the symbols A, B and C can be repeated / 
on the different positions of the same unit cells. There- 
fore let us denote additionally the successive layers A~ 
of each of three perfect primary sequences (originat- 
ing from the A-, B- or C-type layers) by subscript j 
( j =  1, 2 , . . . ,  n; where n is a period of identity of 
structure). For twinned sequences (enantiomorphous 
with the primary one) we use subscript j and a prime. | 
Next we denote the probability of obtaining a faulted B~ 
layer with subscript k (or k') after a layer with sub- 
scriptj by %k (or %k')" Subsequently, the probabilities 
of obtaining perfect layers with subscripts (j + 1) next 
to layers with subscriptsj are given by symbols (1 - gj) 
or ( 1 -  gj,), where [ 

gj= %k and gj,= Otjk,. (6) C, 
k = l  k = l  

The classification, used in the literature, of stacking 
faults in close-packed structures divides them into 
deformation and growth faults (Lele, 1974; Frey & 
Boysen, 1981). This distinction is based on the process 
of fault formation. The faults which can arise through 
the process of glide of one part of the crystal with 
respect to the rest of it are called deformation faults, 
and the faults which can arise only from a growth 
mechanism are called growth faults. | 

In § 4 of this paper it will be shown that another 
distinction with regard to the general theory of X-ray A, 
diffraction is more convenient. All the possible single 
stacking faults for arbitrary n-periodical close-packed 
polytypic structures can be divided into twinning and 
non-twinning faults. 

The method of defining all the possible single stack- [ 
ing faults (twinning and non-twinning) in arbitrary B, 
close-packed polytypic structures is illustrated by 
Figs. l (a)  and (b). For some layers in Figs. l (a)  and 
(b) we cannot assign the symbols A, B or C by the 
general method for all polytypic structures. In order 
to obviate this difficulty in the notation of these layers, / 
we introduce the symbols X A, X~, X c and Xj, where 
j = 1, 2 , . . . ,  n (see Fig. 2). The superscripts A, B or c, 
C indicate here that the layer is taken from the 
sequence originating from A-, B- or C-type layers. 
Absence of superscripts from the symbol X means 
that we do not know from which sequence the layer 
with subscript j is taken. For example, layers lying 
immediately after faults can be denoted only by these 
symbols. 

A, B2... B n 
B1C2 . . . C, 
Ct A2 ... An 

1 - gl 1 - g2 1 - gn 
B 2 f - - C 3 ° r A s  t AI 0/lt O/21 o/hi 

• C1 B2 ~ A t  o r  Ct  . . . B n  . C ,  

0/ , n 0/2n 0/nn 
C n - - A  n or Cn Cn 

1 - g t 1 - g2 1 - g~ 

0/'1 0/21 0/nl 
• A t C2 . B t or A i . . .  Cn • A t  

Olin 0/2n 0/nn 

A n - -  B n or A n A n 

Ix-- gt 1 - g2 1 - gn 

- - a 2 f - - B s ° r C 3  t Cl 0/11 0/21 o/hi 
• B1 A2 h C l ° r B  l . . . A n  • B1 

0/ l n 0/2n 0/nn 
B. - -  C .  or B n B n 

(a) 

AtB2 . . . Bn A~ C'2 . . . C" 
Bt C2... Cn B~A'2... A'n 
ClA2... An C[B~... B" 

1 - g ~  1 - g ~  l - g "  

- - B 2  f - - C 3 ° r a 3  t al a~, a h  a ' ,  

----7-----  C[  B2 . A~ or C[ . . .  Bn . C[ 

0/~n 0/~n 0/'n 
C "  - - A "  or C "  - - C "  

1-g~ 1-g~ l -g" 

- - C 2 f - - A 3 ° r B 3  BI 0/ 't , 0/ ; , 0/ " , 

A~ C2 ~ B ~  o r A ;  . . . C n  . A~ 

0/~, 0/~n 0/', 
A n - - B  n or A~ a; ,  

1 - g ~  1 - g ~  l - g "  

'~, 0/h 0/', 
- - - F - -  B~ A2 ----T--- C~ or B~ ... An m B~ 

0/~n 0/;, 0/'n 
a• C ;  or B'. ~ B ~  

(b)  

Fig. 1. ( a )  All the possible  single non- twinning faults  in arbi t rary  
c lose-packed  structures.  (b)  All the possible single twinning 
faults in arbi t rary  c lose-packed  structures. 
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HS.gg's symbols. Moreover, all the twinning faults are 
growth faults, while among the non-twinning faults 
we can distinguish growth and deformation faults. 

Besides the single stacking faults considered above, 
there are double, triple and multiple faults. For 
instance, single(intrinsic)-, double(extrinsic)-, triple- 
and multiple-deformation faults in 3 C crystals were 
considered by Kakinoki (1967). Moreover, the fault 
ABAB : C : ABAB in the 2H structure was called the 
extrinsic fault by Pandey & Krishna (1977). The 
names intrinsic and extrinsic faults were also used 
(Prasad & Lele, 1971; Lele, 1974; Pandey & Krishna, 
1976) for polytypic crystals together with deformation 
and growth faults. According to our distinction, the 
name intrinsic relates in these cases to single non- 
twinning faults, the name extrinsic relates to double 
non-twinning faults and the name extrinsic in the 2H 
structure relates to double non-twinning-twinning 
faults. 

4. Coefficients of the characteristic equation 

In the notation used by Warren (1959) the average 
phase factor (exp (i~0m)) can be expressed, in general, 
by 

(exp (iCpm))= pO + P+m exp [ 4-2 7ri(H - K )/3] 

+PT,,exp[T2"n'i(H-K)/3]. (7) 

x O x f . . . x ~  

x f x f . . . x f  

x ~ , x ~ . . . x ~  

1 - g l  1 --g2 1 --gn 
x f  x ¢  x f  

x A . x ,  x A . x ,  . . . x ~  . x ,  

Otln ~2n  Olnn 

X. x. - -  xn 

1 - g l  1 - g 2  1 - g ~  
- -  x ¢  x f  x f  

x," . x ,  x ~  . x ,  . . . x f  . x ,  

Ofln  I~I1~2 rl ~nn 
X. X. - - X .  

1 -gi 1 -g2 1 -g~ 
- -  x ~  x f  x ,  ~ 

x F  • x i  x f  . x ,  . . . x ~  . x ,  

O~ l n O~2n Otnn 

X. X. X. 

Fig. 2. The X A, X~, X c and Xj symbols introduced for notation 
of layers in close-packed structures. 

For H - K  = 1, (7) has the form 

(exp (/~0m)) = pO + p~ exp (+2~ri/3) 

+ P~, exp (:~2~i/3), (8) 

where pO, p~, p~, are the probabilities that, relative 
to the zero layer, the layer m is the same, or one 
ahead, or one behind in the ABC sequence. 

Let us introduce the subscripts j and k defining the 
faults into a description of X-ray diffraction. If the 
origin layer has symbol A, the probabilities pO, p .  
and P~ can be written as 

and 

pO= ~ P(m, Aj), P+= ~ P(m, Bj) 
j = l  j = l  

P~,= ~ P(m, Cj), (9) 
j = l  

where P(m, Aj), P(m, Bj) and P(m, Cj) are prob- 
abilities of occurrence of the layers Aj, Bj and Cj type 
on m position. Substituting (9) in (8), we can write 

(exp (i~Om))= ~ P(m, Aj) exp [i~p(m, Aj)] 
j = l  

+ Y. P(m, Bj)exp[i~o(m, Bj)] 
j = l  

+ ~ P(m, Cj) exp[icp(m, Cj)], (10) 
j = l  

where ~o(m, Aj) = 0, ~o(m, Bj)= 2zri/3 and ~p(m, Cj)= 
-2~i/3 are phases of layers of type Aj, Bj and Cj. 
The terms with identical subscripts on the right-hand 
side of (10) may be grouped and written as 

P(m, Aj) exp [i~o(m, Aj)]+ P(rn, Bj) exp [icp(m, Bj)] 

+P(m, Cj)exp [i~o(m, Cj)] 

=(exp[icp(m, Xj)]), j =  1 ,2 , . . . ,  n, (11) 

where (exp [i~,(rn, Xj)]) means the average value of 
phase factors for layers with subscript j on the m 
positions. Thus the average phase factor (exp (icpm)) 
may be expressed in the form 

(exp (i(pm))= ~ (exp[icp(rn, Xj)]). (12) 
j = l  

Recurrence relations for the average phase factors 
(exp [ i~o (m, Xj)]) may be formed using the probability 
trees presented in Fig. 3. The 3n types of layers X~, 
X~ and X c (where j =  1, 2 , . . . ,  n) can occur on an 
arbitrary position in the crystal. Let the probabilities 
of occurrence of these layers on position ( m -  1) be 
respectively equal to P( m - 1, xA), P(m - 1, Xf )  and 
P ( m -  1, xC).  Hence the probabilities P(m, Xj) can 
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be expressed as 

P(m, Xk) = (1 --gk-~)P(m -- 1, xA_~) 

+ ~ %kP(rn- l ,X  A) 
j = l  

+(1-gk_~)P(m-l,X~_~) 

+ ~ %kP(m-I ,X~)  
j = l  

+(1-gk_ l )P(m- l ,  XC_l) 

+ ~ ajkP(m-l ,  XC), 
j = l  

k-- 1 , 2 , . . . ,  n. (13) 

0 . . .  m - 1  m 

A - 

1 - - g l  

P(m-I,X~) X A t °qt" 

• Olln 

x~ 

XI 

X n  

1 - g .  

a. ,  x'a 

P(m-I,X A) XA. . X, 

Otnn 

- -  X n 

1 -gt 

P(m-I, Xa) f - -  X, x B, • 
• O~ln 

X. 
1 - g. 

P(m - 1, x~) x, 
x~ " 

Oln n 

- -  X n 

1 -gt I ~,, xC 
P(m - 1, X c) X, 

x~ " 
• O£1n 

X .  

1 - g .  

t ,~., xC 

e(m - 1, x c) x ,  
x f  " 

Otn n 

X. 

Fig. 3. Probabi l i ty  trees for  all the possible  layers on (m - 1) and  
m posi t ions in the sequences  or iginat ing f rom A- type  layers o f  
c lose-packed  structures.  

The average phase factor <exp [i~o(m, Xk)]) can be 
obtained by multiplying each of the (3n+3)  terms 
on the right-hand side of (13) by the phase factor of 
the layer on position m described by this term. In 
order to evaluate enough phases let us consider them 
as sums of the phases of layers on positions ( m -  1) 
and changes of phase from position ( m - l )  to m. 
Phases of layers on position (m - 1 ) are found because 
the subscriptsj and superscripts A, B or C are known 
for these layers. The changes of phase can be deter- 
mined by using Hhgg's structure symbols. For this 
purpose let us introduce the so-called phase-change 
factor after layers with subscript j, 

Sj = exp (±2zri/3), (14) 

where the sign '+ '  or ' - '  is chosen by Hhgg's structure 
symbols. The change of phase is in agreement with 
Hhgg's structure symbol if a perfect layer occurs after 
a layer with subscript j. The change of phase is 
opposite to Hhgg's structure symbol if a faulted layer 
occurs after a layer with subscript j. In general the 
factor Sj has the properties 

S 2=S*, Sj+,=Sj and fi S j = I ,  (15) 
j = l  

where S* is the complex conjugate of Sj. 
After multiplication on the right-hand side of (13) 

we can write 

(exp [hp(rn, Xk)]) 

= ( 1  - g k - , ) S k - ,  P (  m - 1, X ' ~ _ , )  

x exp [iq~(m- l, XA_,)] 

+ ~ %kS*P(m--I, XAlexp[i¢(m--I ,  XA)] 
j = l  

+ (1 - gk-,)Sk-,P(m -- 1, XBk_,) 

x exp [i~p(m- l, X~_,)] 

+ ~ %kS~P(m-l ,  X f )  exp[i~o(m-l,X~)] 
j = l  

+ (1 - gk-~)Sk-lP(m -- 1, xC_l) 

x exp [Ro(m - 1, xC_,)] 

+ Y. a j k S * P ( m - l , X  c) 
j = l  

x e x p [ i ¢ ( m - l ,  XC)], k =  1 , 2 , . . . ,  n. (16) 

The terms with the same subscripts on the right-hand 
side of (16) may be grouped and written as 

P ( m -  1, X'~) exp [ i~o(m- 1, XA)] 

+ P ( m -  1, Xj s) exp [ i¢(m-  1, XjS)] 

+ P ( m - l ,  XC)exp[Ro(m-l ,  XC)] 

=(exp[i~o(m-l, Xj)]), j = l , 2 , . . . , n .  (17) 
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Thus we obtain the following set of recurrence rela- 
tions: 

(exp [ iq~(m, Xk)]) 

= (1 - gk-~)Sk-~(exp [iq~(m - 1, Xk_~)]) 

+ ~ a jkS*(exp[ iq~(m- l ,  Xj)]), 
j = l  

k = l , 2 , . . . ,  n. (18) 

Let the solution of the relations (18) have the form 

( exp[ i~ (m,  X i ) ] ) = K j X  m, j = l , 2 , . . . , n .  (19) 

Substituting (19) into (18) we obtain the set of n 
equations for coefficients Kj: 

Kk X - (1 - gk-~)Sk-~ Kk-~ -- ~ a ikS* K~ = 0, 
j = l  

k - - 1 , 2 , . . . ,  n. (20) 

The set of equations (20) can be written in matrix 
form as 

,~,,s*,-x ,~=,s* ,~,,s* . . . .  .,s*. 
+(1 - g,,)S. 

~,:s* ,~22s*~-x ,~32s~ . . . .  °2s*, 
+( l  - g t ) S i  

~13S~ ~2382 ~ ot33S3 ~ --  X . . . .  n3S*n 

+ ( I - g2)$2 

~,.s,* ,,~.s*~ ~3.s~ . . . .  . .s*.-  x 

-K! ° 

K 2 

K 3 =0. 

_Kn. 

(21) 

For non-trivial values of K~ solutions, the determinant 
of the first matrix of (21) must vanish. From this 
condition the characteristic equation is obtained. 
Expanding the determinant under the assumption of 
small values of ajk we can neglect all terms which 
contain products of different ajk or powers of Oljk 
greater than one. Thus the determinant of the n x n 
matrix with all non-zero terms can be substituted by 
the sum of n determinants which contain only one 
type of Odjk at a time, whereas the other terms with 
am, (m C j, n ~ k) are equal to zero. 

For particular OLjk ~ 0 we have the following cases: 
when k -<j, 

j - 1  

X "  - S* I-I S, Ogk X"+k-j-~ + Cejk-- 1 =0;  (22) 
i = k  

when k > j, 

k - 1  

X " - S *  [I S*ajkXk-J-~+ajk  - 1 = 0 .  (23) 
i = j  

In the recurrence relations for the twinning faults 
it is also necessary to consider the fact that these 
faults change the sequence of layers after the fault 
into having a twin relationship with the primary one. 
For the primary sequence the phase factors of layers 

with particular subscripts k are given by 

exp [hp(xA) - iq~ (A)] =exp [iq~(X~)-iq~(B)] 

= exp [ iq~(Xk c) -- i~o( C)] 

k - I  

= I-I Si, (24) 
i=1 

while for the twinned sequence 

exp [ iq~(xA,) - i~o(A)] =exp [i~o(Xff,)- iq~(B)] 

= exp [ i¢# (Xk c,) -- iq~( C)] 

k - 1  

= I-I S*. (25) 
i=1 

Combining (25) and (24) we can write 

exp [ itp(xA,) - i~0(xA)] =exp [iq~(Xkn,) - iq~(XkB)] 

= exp [i~O(XkC,) -- iq~(X c )] 

k - 1  k - 1  

= I-I S/*/s, = 1-I S,. (26) 
i=1 i=1 

In order to obtain the recurrence relations for the 
twinning faults it is necessary to multiply all terms 
[of (18)] containing probabilties ajk by the factors 
expressed by (26). 

For ajk # 0 the characteristic equations obtained as 
for (22) and (23) have the following forms: 
when k <-j, 

j - - I  

X " - S *  1-I S, a jk 'X"+k-~- '+ajk ' - - l=O;  (27) 
i=1 

when k > j, 
j - -1 

X " - S *  I-I S, a jk 'Xk-J- '+ajk  ' - 1 = 0 "  (28) 
i=1 

In general, (22), (23), (27) and (28) have complex 
coefficients. However, they are separable into 
equations with real and imaginary coefficients, and 
the latter equations may be omitted. 

5. Boundary conditions 

By analogy with Prasad & Lele (1971), we derive 
expressions for the boundary conditions from the 
equation 

( exp[ iq%,] )=J(m)= ~ w iJ(m)j ,  
j = l  

m = 0 ,  1 , 2 , . . . ,  n, (29) 

where wj represents the probability of occurrence of 
layers with a particular value of j at an arbitrary 
position in the crystal and J(m)j  are the average phase 
factors for layers on position m in sequences originat- 
ing from a layer with a particular subscript j. 

For small values of %k, the boundary conditions 
J (m)  can be written as the sums of terms J°(m)  
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without Oljk and the terms J ' (m)  containing Oljk , as 

J(rn) = J°(m)  + J ' (m) .  (30) 

It will be shown in § 6 that only the terms J°(m)  
are needed for obtaining the final expressions. The 
terms J°(m) are determined as 

J ° ( m ) =  ~ w°J°(m)j.  (31) 
j = l  

where the superscript '0' denotes the term without ajk. 
0 the following set of equations can be To obtain w: 

obtained from Fig. 3: 

W°=(1--gk_,)W°k_,, k =  1 , 2 , . . . ,  n, (32) 

with the normalizing condition 

0_ wj - 1. (33) 
j=l  

The solution of (32) and (33) is 

o 1/n. (34) w ° = w ° = . . . = w ° =  

In order to evaluate jO(rn)j it is sufficient to con- 
sider the perfect sequences because only for them are 
the probabilities of occurrence of the layer on position 
m equal to unity without any aj,. Thus the terms 
J°(m)j  are equal to the phase factors of layers on 
positions m in perfect sequences and can be written 
as 

j+m--1 

J°(m) j=  I-I S~ for m>O and J°(O) j= l .  
i = j  

(35) 

From (31), (34) and (35), the terms of boundary 
conditions without a~k can be written as 

1 ~ j+m-1 
J°(m)  = - Y ~  I-I Si for m > 0  

n j = l  i=j  

and J ° ( 0 ) = l .  (36) 

Moreover, it can be shown that the terms of the 
boundary conditions without Oljk have the following 
symmetry: 

J ° ( m ) = J ° ( n - m ) * = J ° ( n + m ) .  (37) 

Owing to the above symmetry further considerations 
will be simplified. 

6. Influence of stacking faults on the reciprocal-lattice 
point shifts, broadenings and changes in the peak 

maxima 

Taking into account the fact that in general the boun- 
dary conditions J (m)  are complex and the coefficients 
aj of the characteristic equation are real, we can 
rearrange (5) for the intensity distribution into the 

simple form 

I ( h3) = ~O 2 

2 ~ {Re N,. cos[(2mrr/n)h3] + Im N,. sin[(2m~r/n)h3]} ) x 1+ 

D,. cos[ (2mlr/ n)h3] 
m=O 

(38) 

where Re Nm and Im Nm mean the real and the 
imaginary parts of Nm and 

-~_ 2 Do (1 + a , - , + .  • .+a2o), 

D~=2(a, ,_~+a,,_~a,_2+.. .+a~ao),  . . .  , 

Dn-2 = 2(a2 + a.- i  al + a.-2ao), 

D.- i  = 2(al + a.-lao), D. = 2ao, 

No = a,_,J(1)  + a,_2[J(2) + a,_,J(1)] 

+ a,_3[J(3) + a,_~J(2) + a,_2J(1)] + . . .  

+ a~[J(n - 1 ) + a,_ ~J(n - 2) + . . .  + a2J(1 )] 
- -  a 2 ,  

N1 = a,_2J(1) + a~_3[J(2) + a,_lJ(1)] + . . .  

+ ao[J(n - 1)+ a,,_~J(n - 2 ) + . . . +  a2J(1)] 

+ a,J(1) + a,_,[J(2) + a,_,J(1)] + . . .  

+ a 2 [ J ( n -  1)+ a , , _ ~ J ( n - 2 ) + . . . +  a2J(1)] 

- - a l a o ,  . . .  , 

S,_2 = a,J(1) + ao[J(2) + a,_,J(1)] 

+ a,,[J(n - 2) - a,,_,J(n - 3) + . . .  + a3J(1 )] 

+ a, ,_~[J(n-  1)+ a , , _ , J ( n - 2 ) + . . .  

+ azJ(1)] - a,-2ao, 

N,_, = aoJ(1) + a,,[J(n - 1) + a,,_~J(n - 2 )  + . . .  

+ a2J(1) ] -  a,,_lao, 

N, = -ao .  (39) 

If the boundary conditions are real (this is true, 
for example, for hexagonal structures) (38) has the 
form 

I(h3) 02 +2 oN,,, cos[(2mlr/n)h3] 
. . . . . . . . . . . .  . (40) 

Y, D,,, cos[(2rnTr/n)h3] J 
m = 0  

To describe the shifts Ah3(h3) of the reciprocal- 
lattice points caused by stacking faults, let us sub- 
stitute (h3+ Ah3) into (38) as argument. Differentiat- 
ing this expression with respect to zlh3 and equating 



E. MICHALSKI 647 

to zero, we obtain for Ah 3 the equation 

{m Re N~ sin [(2m'n'/n)h3+(2m'rr/n)Ah3] 
m = 0  

- rn Im Nm cos [ (2mcr / n ) h 3 + (2mTr / n ) Ah3] } 

x ~ D,, cos [(2mzr/n)h3+(2mzr/n)Ah3] 
m = 0  

- ~ mDm sin [(2mcr/n)ha+(2mzr/n)Ah3] 
m = 0  

x ~ {Re Nm cos[(2m'n'/n)h3+(2m~r/n)Ah3] 
m = 0  

+ Im N,,, sin [(2m'n'/n)h3+ (2m~/n)Ah3]} = O. 
(41) 

If we expand the sine and cosine functions into series, 
use (22), (23), (27), (28) and (39) and assume small 
values of ajk, the solution Ah 3 can be expressed as 

Ah3(h3)=(1/4nzr) ~ mD,,sin[(2m'rr/n)h3]. (42) 
m = 0  

After substitution of (32), (33) and (39) into (42), the 
expression for Ah3(h3) has the final form 

Ah3( h3, Oqk) = (1/27r)ajk Re Sjk 

xs in{[2(k- j -1)~r /n]h3} ,  (43) 

where 

Sjk ~- 

j - I  

$* 1-I Si for k - < j / i n  the case of 
i=k non-twinning 
k - 1  

S* 1-I S* for k > j J  faults, 
i=j 

j - I  

sT I/s, 
i=1 

in the case of twinning faults. 

(44) 

The broadenings Aw(h3) of the reciprocal-lattice 
points caused by stacking faults are calculated as their 
half widths, determined by 

I(h3+ Ah3+Aw/2)=½I(h3+Ah3). (45) 

Putting (h3 + Ah3 + Aw/2) and (h3 + Ah3) as argument 
into (38) and expanding cosine and sine functions 
into series, we obtain from (45) the equation for Aw. 
According to considerations given in the Appendix, 
for small Oljk the numerators of fractions on both sides 
of this equation are equal to each other and for the 
evaluation of Aw(h3) it is sufficient to compare the 
denominators. 

Consequently we obtain for Aw the equation 

Dm{cOs [(2mTr/ n)h3] 
m = 0  

-- (2mcr/ n)( Ah 3 -F Aw/2) sin [ (2mTr/ n)ha] 

-½(2m'rr/ n)2(Ah3 + Awl2) 2 cos [(2mTr/n)h3]} 

=2 ~ D,,,{cos[(2m'n'/n)h3] 
m----0 

-(2m'a'/n)Ah3 sin [(2met/n)h3] 

-½[(2m.n'/n)Ah3] 2 cos[(Em'a'/n)h3]}. (46) 

The solution of (46) has the form 

Aw(h3)=(1/~'){m=o ~ D,,, cos[(EmTr/n)h3] 

"~ 1/2 

- -  4 7 r 2 ( A h 3 ) 2 ~  . ( 4 7 )  

Substituting (32), (33) and (39) in (47) we obtain 
finally 

Aw( h3, Oljk) 
= ( Oqk/ Tr)[1 +(Re Sjk) 2 

-- 2 Re Sjk COS {[2(k - j  - 1)rr/n]h3} 

- ( R e  Sjk)2 sin2 {[2( k- j -1) 'rr /n]h3}] '/2, (48) 

where Sjk is determined by (44). 
The influence of a particular ajk on Imax(h3) may 

be found from the formula 

Imax(h3) = / ( h 3 +  Ah3). (49) 

From the Appendix, the final formula for/max(h3, Otjk) 
has the following form: 

(i) in the case of structures for which the terms 
J°(m) of boundary conditions are real, 

where 

Imax(h3, 0ljk)=~b 2 L'(h3' °tJk) (50) 
"/r2[Aw(h3, ajk)] 2' 

/ 
L'( h3, ajk) = 2ajk~ 1 -- Re SjkJ°(j - k+ 1) 

n/2-1 
+ '~. { J ° ( m ) + J ° ( n - m )  

m = l  

- R e  S j k [ J ° ( m - n - k + j +  1) 

+ jo(j + 1 - k -  m)]} cos [(2met/n)h3] 

+[J° (n /2 ) -  Re S:kJ°(j + 1 -- k 

- n/2)] cos (Trh3)), (51) 

and Zlw(h3, Otjk ) are determined by (48); 
(ii) in the case of structures for which the terms 

jO(m), are complex, 

Imax(h3, 0tjk)= ~ 2 L°(h3) (52) 
.n'2[ Aw( h3, a:k)] 2' 
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where 

j + m - I  

L ° ¼ ( 4 / n )  Im ~ ~ 1-I 
m = 0  j = l  i= j  

S, sin [(2row/n)h3]. 

(53) 

7. D i s c u s s i o n  

The final formulae (43), (48), (50) and (52) allow us 
to express the measurable parameters (Ah3, Aw and 
/max) of changes in the intensity distribution by fault 
probabilities for arbitrary n-periodical structure. 
These formulae are given in the form of simple alge- 
braic and trigonometric functions of the subscripts j, 
k defining the type of faults, factors Sj determined 
by the H~igg structure symbols, coordinates h3 and 
probabilities O£jk. 

The subscripts j , k  defining the faults are convenient 
for mathematical treatment of arbitrary n-periodical 
structures. However, it is possible that faults with 
identical structures can be denoted by different sub- 
scripts j, k. In that case the faults should be considered 
to repeat the same type of fault and the common 
diffraction effects should be evaluated. For this rea- 
son, for polytypes in which the faults are repeated it 
is not possible to use the final expressions directly. 

The application of the theory to the cases of 
hexagonal and rhombohedral structures will be pres- 
ented by Michalski, Kaczmarek & Demianiuk (1988). 
The physical meaning of the assumption of ajk, for 
instance of the structures with faults, will also be 
discussed in that paper. 

In the theory presented above only single faults 
are considered. This case seems to be the most im- 
portant. As a next step of development of the theory, 
faults which are not single could be considered. These 
faults may be defined similarly by groups of indexes. 
Three indexes would be necessary and sufficient for 
double faults, four indexes for triple faults, etc. 

+ (2mTr /n )Ah3  cos [ (2mzr /n )h3]  

- ½ [ ( 2mzr /  n )Ah3] 2 sin [ ( 2mTr/ n ) h3] + . . .} ), 

(A2) 

M =  ~ Dm{cOs[(2rnzr /n)h3]  
m = O  

- (2m.n ' /n)Ah3 sin [(2mTr/n)h3] 

- ½ [ ( 2 m ~ / n ) A h 3 ]  2 cos [ (2mTr /n )h3]+ .  . .}. 

(A3) 

In the denominator the terms without Oljk and contain- 
ing the first power of Oljk vanish due to specific sym- 
metry of D,,. After omitting the terms with power of 
Oljk greater than two, we obtain 

M =  ~ Dmcos[(2mTr/n)h3]-4zr2(Ah3).  (A4) 
r a = 0  

In the above formula, particular D,,, terms occur 
effectively in the form of sums (D,, + D,,_,,) because 
cos (2mzrh3/n)  =cos  [2(n-m)Trh3/n] .  Hence we 

2 need not evaluate the aj terms containing ark in 
particular Dm terms, because these terms cancel each 
other. 

In the numerator of expression (A1) it is sufficient 
to take into consideration only the terms with the 
lowest power of Oljk. The terms without Oljk occurring 
in particular N,,, can be written as 

N O = -1 ,  

N O= - J ° ( n -  1)+ J°(1), 

NO= _jo(  n - 2) + J°(2), (A5) 

0 0 N,,/2 = O, . . .  , N , , -2  = - J ° ( 2 )  + J°( n - 2), 

0 = N, ,_ ,  - J ° ( 1 ) + J ° ( n - 1 ) ,  N ° = l .  

A P P E N D I X  

Der ivat ion  o f  the f o r m u l a e  for lmax(h3) 

Substituting the Ah3 [given by (55)] into (59) and 
expanding the sine and cosine functions into a series 
we obtain 

lmax(h3) = ~b2(1 + L / M ) ,  (A1) 

where 

n 
L = 2  ~ (Re Nm{cOs [(2mTr/n)h3]  

m = 0  

- (2m ' r r /n )Ah  3 sin [ (2mzr /n )h3]  

-½[(2m'a ' /n )Ah3]  2 cos [ (2m'n ' /n )h3]+.  . .} 

+ Im N m { s i n [ ( 2 m T r / n ) h 3 ]  

Separating the real from imaginary parts, we obtain 

Re N O = -1 ,  

Re o o N! = Re N O = Re = 0, • • • = N n - 1  

Re N O :  1 

(A6) 

and 

Im N O = 0, Im N O = 2 Im jo(1), 

I m N  ° = 2 I m J ° ( 2 ) ,  . . .  , 

Im o N~_~ = 2 Im J° (n  - 1), Im N O = 0. 

(A7) 

Uging (A6) and (A7) we can express the terms with 
the lowest power of %k of the numerator of (A1) as 
follows: 
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(i) in the case of structures with complex boundary 
conditions, 

L°(h3)=2 ~ Im N ° sin[(2mTr/n)h3] 
m=0 

= 4  ~ ImJ°(m) sin[(2mTr/n)h3]; (A8) 
m=0 

(ii) in the case of structures with real boundary 
conditions, 

,1 
L '=2  ~ N "  cos[(2mTr/n)h3], (A9) 

m=0 

where the prime indicates that the terms contain the 
first power of  C~jk. Moreover, in (A1) we can omit the 
unity before the fraction because this one has the 
same magnitude as a -I in the first case and as a -2 
in the second case. 

In order to evaluate L', we use the fact that N "  
effectively occurs in (A9) as ( N "  + N'_ , , ) .  Thus from 
(39) it follows that the evaluation of J'(m) is dispen- 
sable because they cancel out. 

Substituting (39) into (A9) we obtain 

n/2-1 
L'(h3)=2 N ~ + N ' +  ~ ( N ' +  ' Nn-m) 

m=l 

X COS [ (2mTr /n )h3]  + Nrn/2 cos (7rh3) } 

= 2 (a~) + a~ j0(n - j )  

n/2--1 

+ ~ { a ~ [ J ° ( m ) + J ° ( n - m ) ]  
m=l 

+ a~[J°(m - j )  + jO(n - m -j)]} 

x cos [(2mTr/ n)h3] 

+ [ a~J°( n / 2) + a~J°( n / 2 - j )  ] cos (7rh3) ) .  

(A10) 

Using (22), (23), (27) and (28), we can obtain the 
final formula, (51). 
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